# Scattering theory for Klein-Gordon equations with non-positive energy

Research paper by **Christian Gérard**

Indexed on: **09 Sep '11**Published on: **09 Sep '11**Published in: **Mathematical Physics**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

We study the scattering theory for charged Klein-Gordon equations:
\[\{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x,
D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)=
f_{1}, {array}. \] where: \[\epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq
n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x),\]
describing a Klein-Gordon field minimally coupled to an external
electromagnetic field described by the electric potential $v(x)$ and magnetic
potential $\vec{b}(x)$. The flow of the Klein-Gordon equation preserves the
energy: \[ h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+
\bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x)
\d x. \] We consider the situation when the energy is not positive. In this
case the flow cannot be written as a unitary group on a Hilbert space, and the
Klein-Gordon equation may have complex eigenfrequencies. Using the theory of
definitizable operators on Krein spaces and time-dependent methods, we prove
the existence and completeness of wave operators, both in the short- and
long-range cases. The range of the wave operators are characterized in terms of
the spectral theory of the generator, as in the usual Hilbert space case.